

Technisches Handbuch

HDrive17-ETH Servomotor

Abstract:

Der HDrive17-ETH ist ein integrierter Servoantrieb, welcher über den eingebauten Webserver oder mit nur wenigen Code-Zeilen, über Ethernet gesteuert werden kann.

Der Direktantrieb auf Basis eines hochpoligen, bipolaren Schrittmotors, verfügt über eine feldorientierte Regelung und wird anhand eines Positionssensors elektrisch kommutiert. Vorteile gegenüber herkömmlichen Methoden sind:

- Das übliche Rastmoment bei sonstigen Schrittmotoren wird minimiert. Der Drehmomentverlauf wird so sehr homogen.
- Der Motor kann bis an seine Drehmomentgrenze betrieben werden und die üblichen Schrittmotorreserven werden nicht gebraucht.
- Im Positionsbetrieb wird nur das Drehmoment generiert, welches für genaue Positionierung gebraucht wird. Der Motor kann so wesentlich kühler und effizienter betrieben werden.

Der Servomotor kann im Positions-, Geschwindigkeit- oder Drehmomentmodus betrieben werden. Die Positionsdaten werden durch ein integriertes Encoder System mit 14Bit-Auflösung erfasst. Das schlanke Kommunikationsprotokoll ermöglicht es, Bewegungsbefehle in einer Vielzahl von Programmiersprachen einfach zu generieren.

Impressum

Henschel-Robotics GmbH Mulchlingerstrasse 67 CH-8405 Winterthur

info@henschel-robotics.ch

Zweck dieses Dokuments

Dieses Handbuch richtet sich an technisches Personal, welche einen HDrive Servomotor in Betrieb nehmen. Im Weiteren dient das Dokument der technischen Beschreibung des Produktes und muss sorgfältig durchgelesen werden. Eine Haftung für Folgeschäden und Folgefehler ist ausgeschlossen. Bei der Installation des Gerätes sind die gültigen Normen und Vorschriften zu beachten.

Dokumentversionen

Version	Datum	Änderungen			
0.0	05.08.2015	Dokumenterstellung			
1.0	20.06.2017	Erste Überarbeitung zur Firmwareversion 0.6			
1.2	16.07.2017	Anpassung GPIO und TCP/UDP Control Ticket-			
		Beschreibung zur Firmware Version 0.95			
1.3	05.02.2018	Anpassung Anleitungs-Layout. Dokumentation			
		PID-Regler und PWM Sollwert-Interface, CAN			
		Interface zur Firmware Version 1.3			
1.4	09.06.2019	Generelle Überarbeitung			
		 Pin-Belegung HDrive17-ETH-i 			
		 Watchdog Reset (system state 5) 			
		Error states hinzugefügt			
		Objekt lese und schreibe über TCP			
1.42	07.07.2019	CAN config ticket mit der CAN special			
		Funktion ergänzt			
		 Änderung am Referenzier ticket 			
		Zustandsobjekte lesen und schreiben			

Inhalt

1	Übersicht4
1.1	Vorwort4
1.2	Varianten4
1.3	Zertifikate4
2	Inbetriebnahme5
2.1	Montage5
2.2	Betriebsspannung5
2.3	Integrierter Webserver5
2.4	Pin-Belegung7
2.5	Inbetriebnahme9
2.6	Kommunikation10
3	Funktionsweise
3.2	PID, Positions und Geschwindigkeits Regler13
3.3	Motor Zustandsmaschine14
3.4	Motor-Kalibration15
4	Kommunikation16
4.1	Befehle zum Antrieb16
4.2	Meldungen vom Antrieb zum Hostrechner23
5	Fehlerzustände
6	Firmware Upgrade27
6.1	Website Upgrade27
6.2	Factory Reset27
7	Technische Daten
7.1	Standartwerte der Kommunikation bei Auslieferung28
7.2	Elektrische Standardbetriebswerte28
7.3	Digitale Ein- und Ausgänge29
8	Beispiele

1 Übersicht

1.1 Vorwort

Der "HDrive" der Firma Henschel-Robotics GmbH ist ein integrierter Servomotor basierend auf einem hochpoligen Schrittmotor. Die Integration des Antriebes beinhaltet den Leistungsteil, das Kommunikationsmodul sowie einen Positionssensor für die Rotorposition. Die integrierte Elektronik basiert auf einem ARM[™] Micro-Kontroller und beinhaltet neben anderen Funktionen, einen umfangreicher Achsenplaner welcher als Positions-, Geschwindigkeits-, oder Drehmomentregler arbeiten kann.

1.2 Varianten

HDrive17-ETH	HDrive Servo Motor ohne Getriebe
HDrive17-ETH-GP5	HDrive Servo Motor mit angeflanschtem
	Planetengetriebe, mit einer Untersetzung
	von 5:1
HDrive17-ETH-GP527	HDrive Servo Motor mit angeflanschtem
	Planetengetriebe, mit einer Untersetzung
	von 27:1
HDrive17-ETH-i	HDrive Servo Motor mit industriellen
	Steckverbindern, ohne Getriebe

Der HDrive ist mit oder ohne Getriebe erhältlich. Die genauen Bezeichnungen sind wie folgt:

Tabelle 1: Motorvarianten

1.3 Zertifikate

Der HDrive wurde erfolgreich gegenüber folgenden EMV Standards am 30. Mai 2017 getestet:

Standards		Result
EN 61000-6-3:2011 IEC 61000-6-	Electromagnetic compatibility (EMC) –	Pass
3:2011 (ed2.1)	Part 6-3: Generic standards - Emission standard for residential, commercial and light-industrial environments	
EN 61000-6-2:2016 IEC 61000-6-	Electromagnetic compatibility (EMC) –	Pass
2:2016	Part 6-2: Generic standards - Immunity for industrial environments	
EN 61326-1:2013 IEC 61326-1:2012 (ed2.0)	Electrical equipment for measurement, control and laboratory use – EMC requirements – Part 1: General requirements	Pass

2 Inbetriebnahme

2.1 Montage

Der Motor darf nur über die vier M3 Gewinde (Tiefe, 4.5mm) an der Vorderseite (bei der Motorwelle) angebracht werden. Der Motorflansch muss geerdet werden.

2.2 Betriebsspannung

Die zulässige Betriebsspannung des HDrive Servomotors liegt bei 12V bis 24V. An die Versorgungsspannung muss ein Kondensator von mindestens 4.7mF/50V angebracht werden um Überspannungen, welche bei einem Bremsvorgang entstehend können (Generatorbetrieb), zwischen zu speichern.

Achtung: Betriebsspannungen von über 28V, sowie deren Verpolung, können zur Zerstörung des Motors führen. Leitungen niemals unter Spannung trennen.

Die Inbetriebnahme muss durch technisch ausgebildetes Personal erfolgen. Ausserdem müssen die geltenden Vorschriften beachtet werden.

2.3 Integrierter Webserver

Der Antrieb verfügt über einen integrierten Webserver. Mit Hilfe des Webbrowsers können alle Motordaten live betrachtet werden. Zudem können alle Parameter, wie z.B. Regler-Einstellungen, Strom, Beschleunigungsrampe usw. konfiguriert werden. Zur besten Darstellung empfiehlt sich der Webbrowser "Google™ Chrome" oder "Apple™ Safari".

Bild 1: HDrive17-ETH Webinterface

Achtung: Das Web GUI ist gedacht um den Motor bei der Inbetriebnahme zu überwachen. Zudem kann der Motor aber auch aus dem GUI betrieben werden. Stellen Sie deshalb sicher, dass die Motorwelle frei drehbar ist, wenn Sie das GUI brauchen.

Der implementierte Webserver ist nicht gegen fremde Zugriffe geschützt. Dies muss auf Netzwerkebene beachtet werden.

Falls das Web GUI im Betriebsmodus "Motor Control" geöffnet ist, reagiert der Motor nicht auf externe Befehle.

2.4 Pin-Belegung

2.4.1 HDrive17-ETH

Bild 2: HDrive17-ETH Seitenansicht mit Stecker

Tabelle 2: Motor Pin-Belegung

2.4.1.1 HDrive17-ETH-i

M8	X3	X1	X2				
Тур	M8 / male	M8 / female	M8 / male				
Codierung	Uncodiert	Uncodiert	A-Codiert				
Beschreibung	Power und CAN	Ethernet	Digital I/O				
Anzahl Pins	4	4	6				
Pinbelegung	PIN Funktion	PIN Funktion	PIN Funktion				
	1 VCC	1 ETH TX+	1 VCC (100mA)				
	2 CAN_H	2 ETH RX+	2 Digital I/O1				
	3 GND	3 ETH RX-	3 GND				
	4 CAN_L	4 ETH TX -	4 Digital I/O2				
			5 Digital I/O3				
			6 Digital I/O4				
	(3) (1) (4) (2) Frontalansicht Stecker Geräteseitig	1 3 2 4 Frontalansicht Buchse Geräteseitig	Frontalansicht Buchse Geräteseitig				
Passendes	z.B.: Beckhoff	z.B.: Beckhoff	z.B.: Phoenix Contact				
Kabel	ZK2020-3200-0xxx	ZK1090-3191-0xxx	Art. Nr.: 1522396				

2.5 Inbetriebnahme

Als minimale Konfiguration wird eine Versorgungsspannung von 12 – 24V benötigt. Um den Motor zu konfigurieren ist es zudem nötig, diesen mit einem Ethernet-Kabel an einen Ethernet-Switch oder direkt an einen PC anzuschliessen. Um die Kommunikation herzustellen, muss der Host (PC) Netzwerkadapter mit derselben Netz-ID wie der Motor ausgestattet werden.

Ist der Motor Fabrikneu besitz er die IP-Adresse 192.168.1.102. Der Host PC benötigt dann eine IP-Adresse zwischen 192.168.1.1 und 192.168.1.254. Jedoch nicht dieselbe wie der HDrive (192.168.1.102).

Eine Konfigurationsmöglichkeit um die IP-Adresse in Microsoft[™] Windows zu ändern wäre zum Beispiel wie folgt:

Connect using:		
This Qualcomm Atheros network Controller connects	you t	
Config This connection uses the following items:	ure	
Client for Microsoft Networks	Internet Protocol Version 4 (TCP/IPv4) Properties	
 ✓	General	
DNE Light Weight Filter	You can get IP settings assigned automatically if your network supports	;
✓ Internet Protocol Version 4 (TCP/IPv4)	for the appropriate IP settings.	
Microsoft Network Adapter Multiplexor Protocol		
	Use the following IP address:	
Install Uninstall Proper	IP address: 192.168.1.11	
Transmission Control Protocol/Internet Protocol. The def	Subnet mask: 255 . 255 . 0	
wide area network protocol that provides communication across diverse interconnected networks.	Default gateway: 192 . 168 . 1 . 1	
	Obtain DNS server address automatically	
ОК	Use the following DNS server addresses:	
	Preferred DNS server:	
	Alternate DNS server:	
	Validate settings upon exit Advanced	

Bild 3: Konfigurationsbeispiel zur Änderung der IP-Adresse in Microsoft™ Windows

Sobald die Host IP-Adresse umgestellt ist, kann in einem beliebigen Webbrowser die IP-Adresse des Motors eingegeben werden. Die Standartadresse des HDrives ist 192.168.1.102 sollte dann erscheinen.

Henschel-Robotics web ac				*	-		×
← → C 🗋 192.168.1.102				G	3 %	CORS	Ξ
HENSCHEL C B S C HEL	Position:	0.0° Speed:	0 RPM				4

Bild 4: Beispiel Eingabe der IP-Adresse in einem Webbrowser (Google™ Chrome)

Danach kann die IP-Adresse des Antriebes unter "Motor Settings" \rightarrow "Communication" beliebig verändert und auf das verwendete Netzwerk abgestimmt werden:

C Henschel-Robotics web a X							Θ		-		ן	×
- → C ① 192.168.1.102/#								Q	☆	3.	4	
HENSCHEL	Position: 25.9° Speed: 0 RPM	IP Adress: Temperature: last error: Moto: State: Uptime: Voltage:	192.10 51.0°C N/A Stop (5 30804 12.5V	58.1.102: 0) ms / 0mA	1000	Fi D D D D D D	irmware Version: emanded Speed: emanded Position emanded Torque: emanded Acceler emanded Deccele igital Out:	ation: eration	1:	1.28 0 RP 0° 0 mN 0 RP 0 RP 0 RP	M Im M/s^2 M/s^2	
home Motor Settings Motor Control	Maintenance Apps											
Motor settings												
Gear Motor Cor	trol Communication Digital I/O	Network Conf	iguratior	1)				
		IP adress:	192	. 168	. 1	102						
		Subnet:	255	255	. 255	0						
		Gateway:	192	. 168	. 1	1						
		MAC:	184 69	57 2	: 100 :2							
		Host Commun	nication									
		TCP port:		1	000							
		UDP port:		1	001							
		Host address for	UDP tickets	: 0	.0	. 0	0					
		UDP Communicat enabled	tion									
		Communication H ticket	Drive to Ho	ost	Can Slav	e Ticket	T					

Bild 5: Beispiel Änderung der IP-Adresse aus dem HDrive Webinterface

2.6 Kommunikation

Jeder Motor kann über eine Vielzahl von Kommunikationskanälen betrieben werden. Die Motorkonfiguration kann aber nur über Ethernet erfolgen. Jeder HDrive Servomotor kann ausserdem als CAN-Bus Master oder Slave agieren. Der als CAN-Master konfigurierte Motor funktioniert dann als CAN-Controller und kann bis zu 8 weitere als Slave konfigurierte HDrive Servomotoren steuern. Dies kann eine Vereinfachung des Verdrahtungsaufwandes einer Installation bedeuten.

Nicht alle Kommunikationskanäle sind Fail-Save. Somit muss bei einem Kommunikationsausfall die übergeordnete Steuerung den Fehler und somit die Sicherheit im System handhaben.

2.6.1 Bus Topologie

Im folgenden Beispiel sind zwei HDrive Servos über Ethernet angesteuert. Einer dieser Motoren ist zudem als CAN-Master konfiguriert und erzeugt einen CAN-Bus. Am CAN-Bus sind im Beispiel nochmals zwei weitere, als CAN-Slave konfigurierte Antriebe, angeschlossen. Die übergeordnete Steuerung kann so alle Motoren ansteuern auch ohne selbst am CAN-Bus angeschlossen zu sein. Die Slave Motoren am CAN können durch Slave-Fahrbefehle zum Master-Motor gesteuert werden. Hierzu bekommt jeder als CAN salve konfigurierte Motor eine Identifikationsnummer von 1-9.

Bild 6: Beispiel, um mehrere HDrive Servomotoren in einem Netzwerk zu betreiben

3 Funktionsweise

Der Antrieb beinhaltet mehrere Zeitdiskrete Regel-Algorithmen. Somit können Strom- und Positions-, Geschwindigkeits- und Drehmomentregler separat eingestellt werden. Alle Regelarchitekturen sind hier vollständig dokumentiert.

Die offene und sehr frei parametrierbare Regelarchitektur muss mit Sorgfalt auf die jeweilige Applikation eingestellt werden. Es ist möglich den Antrieb, sowie die angehängte Last, bei schlechten Regelparametern zu beschädigen.

3.1.1 Regler-Konzept

Der verwendete Schrittmotor wird feldorientiert angesteuert. Dies bedeutet, dass der drehmomentbildende- als auch der Blindstrom separat geregelt wird. Die übergeordnete Regel-Architektur ist wie folgt implementiert:

Bild 7: Wirk- und Blindstromregler Architektur (FOC)

Die zwei PI-Regler vor der inversen Park-Transformation:

Bild 8: Implementierter I_D und I_Q Regler

Die zwei PI-Regler für Id und Iq können frei parametrisiert werden.

3.2 PID, Positions und Geschwindigkeits Regler

Bei dem implementierten Positionsregler handelt es sich um einen zeitdiskreten PID Regler, welcher wie folgt aufgebaut ist.

Abbildung 3: PID Regler Architektur (©Mathworks)

Der Positionsregler kann mit 4 Parametern im Parameter oder Zauberreich konfiguriert werden: Kp, Ki, Kd, N und Kb, bzw. Kb, T1, T2, T3.

Zeichen	Einheit	Beschreibung
Кр	Rad/A	Proportionalanteil
Кі	Rad/A/s	Integralanteil
Kd	Rad/A/s/s	Differenzialanteil
Kb	1/s	Anti Windup Verstärkung
Ν	1/s	Tiefpassfilter des
		Differenzialanteils

Tabelle 3: PID-T1 Regelparameter

Der HDrive beinhaltet einen Bahngenerator, welcher die Sollwerte für den internen Regelkreis anhand vordefinierter Beschleunigungen generiert.

Der Motor kann in mehreren Modi betrieben werden:

1. Stromregler

Hier wird ein Soll Strom mit dem Parameter "Current" übergeben. Der Stromregler kontrolliert dann, dass dieser Strom eingehalten wird. Im Allgemeinen gilt: je höher der Strom desto grösser das Drehmoment. Der Stromregler arbeitet mit einem Takt von 22kHz. In diesem Modus sind Positions- oder Geschwindigkeitsregler deaktiviert.

2. Geschwindigkeitsregler

Hier wir die Geschwindigkeit geregelt. Der Regeltakt hier ist 4kHz.

3. Positionsregler

Der Positionsregler kontrolliert eine Zielposition mit Berücksichtigung der maximalen Beschleunigungen und Geschwindigkeiten. Bei dem Implementierten Regler, handelt es sich um einen PID-T1 Regler. Die Parameter P, I, D und die Zeitkonstante T1 können separat auf die jeweilige Anwendung angepasst werden. Der Regeltakt hier ist 4kHz.

3.3 Motor Zustandsmaschine

Bild 9: Zustandsdiagramm

3.4 Motor-Kalibration

Der Motor wird werksseitig vor der Auslieferung kalibriert. Sollte es zu Unstimmigkeiten im Betrieb kommen, welche sich zum Beispiel durch einen schlechten Rundlauf äussern, kann eine erneute Kalibrierung notwendig sein.

Achtung: Bei der Kalibration muss die Motorwelle frei drehbar sein.

Der Antrieb kann über das WEB GUI neu kalibriert werden. Hierzu ist es erforderlich, dass am Motor eine Spannung von 12V anliegt und die Motorwelle frei und somit ohne Last drehen kann.

© 2019 Henschel-Robotics GmbH, Web-Gui version 1.00

Bild 10: Maintenance Mode

Im Reiter "Maintenance" ist der rote Knopf "calibration" aufgelistet. Nach betätigt dieses Modus macht der Motor einige Umdrehungen als Referenzfahrt und stellt alle notwendigen Parameter ein. Dieser Vorgang kann bis zu 5 Minuten dauern. Das Web GUI darf in dieser Zeit nichtmehr gebraucht werden, da sonst die Kalibration unterbrochen werden könnte. Nach der Kalibrierung startet der Motor automatisch neu und die Kommunikation mit dem Web GUI wird fortgesetzt.

4 Kommunikation

Der HDrive verfügt neben dem HTTP Webinterface auch über einen TCP sowie einen UDP Kanal. Letzterer ist nur zum Empfang von Daten vorgesehen. Fahr- und Konfigurationsbefehle werden immer über TCP gesendet. Für die Informations-Telegramme vom Motor kann sowohl das TCP- als auch das UDP-Protokoll im Web GUI konfiguriert werden. Um die Netzwerkauslastung zu reduzieren kann die Sendefrequenz mit einem Vorteiler reduziert werden.

4.1 Befehle zum Antrieb

Mit dem Positionierungs-Telegramm kann dem Motor eine Zielposition, Zielgeschwindigkeit oder ein Zielstrom vorgegeben werden. Der interne Bahnplaner errechnet eine Bahn anhand der vorkonfigurierten Beschleunigungen und Geschwindigkeiten.

4.1.1 ControlTicket

Telegramm um die Position 100.0° mit einer Geschwindigkeit von 200 U/min, einem maximalen Drehmoment von 200mNm bei einer Beschleunigung sowie Verzögerung von 1000 RPM/s^2 anzufahren:

```
<control pos="1000" speed="200" torque="200" mode="129" acc="1000" decc="1000" />
```


Achtung: Die Reihenfolge der Parameter muss eingehalten werden. Das System ist intolerant auf Leerzeichen in oder vor den Werten und Attributen.

XML Tag	Wertebereich	Einheit	Funktion
Pos	±2 ³¹	1/10 Grad	Definiert die Zielposition
Speed	±2000	RPM	Definiert die maximale Geschwindigkeit für den
			integrierten Bahnplaner
Torque	±600	mNm	Maximales Drehmoment
Mode	-1 bis 133	-	Betriebsmodus
Acc	1 bis 200'000	RPM/s^2	Beschleunigung für Bahnplaner im Modus 129
Decc	1 bis 200'000	RPM/s^2	Verzögerung für Bahnplaner im Modus 129

4.1.2 Parameter Beschreibung Control Ticket

4.1.3 Betriebsmodis

Mode ID	Funktion	Beschreibung
-1	Error	Der Motor hat einen Fehler. Der Fehlerzustand kann im Web-GUI oder über
		das Objekt 3.4 ausgelesen werden
0	Stop, Motor	Schaltet den Motor stromlos, die Welle ist frei drehbar
	Stromlos	
8	Stepper mode	Schrittmotor-Modus, kann gebraucht werden für extrem langsame und
		gleichmässige Bewegungen
9	Motor calibration	Für die Motor Kalibration muss die Welle ohne Widerstand drehen können.
		Der Motor fährt dann mehrere Umdrehungen. Es wird eine
		Kalibrationskurve berechnet und im EEPROM des Antriebs permanent
		gespeichert ¹ .
15	Limit Switch Left	Der Endschalter kann im Web-GUI als low-active oder high-active
	Advanced	konfiguriert werden [.]

Motor IO	configura	tion	
HDrive	HDrive-i (M8)		
Pin 1	Pin 4	none	•
Pin 2	Pin 2	CAN high •	•
Pin 3	Pin 1	VCC (12V - 24V)	•
Pin 4	Pin 5	N/C T	•
Pin 5	Pin 6	Negative Limit/Reference Switch	٠
Pin 6	Pin 3	PWM Position out	•

Die Geschwindigkeit sowie das maximale Drehmoment für die Refernzfahrt wird aus dem control ticket mit den Parametern "speed" und "torque" entnommen.

- 1. Der Motor fährt dann nach Links bis der Endschalter für länger als 1 ms aktiviert ist.
- 2. Sobald der Schalter aktiviert ist wird mit halber Geschwindigkeit zurück gefahren, bis dieser wieder deaktiviert
- 3. Danach wird weiter bis zum nächsten Encoderindex (maximal 359° gefahren).
- 4. Der Betriebsmodus wird automatisch auf Modus 20 gewechselt.
- Danach ist der Kalibrierungsvorgang beendet, der Motor steht nun auf Position ±0.2° und kann mit dem positionier Modus auf 0° geregelt werden.

16	Limit Switch Right	Wie in Limit Switch Left, nur seitenverkehrt
	Advanced	
17	Limit Switch Left	Wie in Limit Switch Left nur ohne die Fahrt auf den Encoder Index puls
	Simple	
18	Limit Switch Right	Wie in Limit Switch Left nur seitenverkehrt und ohne die Fahrt auf den
	Simple	Encoder Index puls
20	Limit Switch	Wird von den Zuständen 15-18 aktiviert
	Finished	

¹ Dieser Vorgang muss in der Regel nicht wiederholt werden, der Antrieb wird bereits vom Werk her kalibriert wird.

128	Motor Stromregler	Der Wirkstrom des Motors wird auf einen Bestimmten Wert geregelt. Somit wirkt ein konstantes Drehmoment am Motor
129	Motor Positionsregler	Der Positionsregler mit dem aktiviertem Bahnplaner
130	Motor Geschwindig- keitsregler	Geschwindigkeitsregler mit internem Bahnplaner
132	Motor Geschwindig- keitsregler NPP ²	Geschwindigkeitsregler mit deaktiviertem Bahnplaner
133	Motor Positionsregler NPP	Positionsregler mit deaktiviertem Bahnplaner

4.1.4 ConfigTicketCAN

Um diese Konfigurationsticket zu verwenden, müssen erst im Web-GUI die Digital I/O Kanäle auf "CAN-High" und "CAN-Low" eingestellt werden. Zudem muss unter dem Reiter "Communication" bei "Communication Host to HDrive Ticket" das Ticket: "Can Ticket" ausgewählt werden.

Mit dem Konfigurationsticket können der CAN-Master-Motor sowie all seine Slaves direkt konfiguriert werden. Es kann somit der Betriebsmodus sowie das maximale Drehmoment jedes einzelnen Antriebes kommuniziert werden. Als Beispiel können so alle Slave Motoren zu einer Referenzfahrt gebracht werden.

² NPP = No Path Planer

XML Tag	Wertebereich	Einheit	Funktion
Master torque	+/- 600	mNm	Definiert das Zieldrehmoment des
			Masters
Master Mode			Betriebsmodus des Masters
Slave 1 torque	+/- 600	mNm	Zieldrehmoment von Slave1
Slave 2 torque	+/- 600	mNm	Zieldrehmoment von Slave2
Slave 3 torque	+/- 600	mNm	Zieldrehmoment von Slave3
Slave 4 torque	+/- 600	mNm	Zieldrehmoment von Slave4
Slave 5 torque	+/- 600	mNm	Zieldrehmoment von Slave5
Slave 6 torque	+/- 600	mNm	Zieldrehmoment von Slave6
Slave 7 torque	+/- 600	mNm	Zieldrehmoment von Slave7
Slave 8 torque	+/- 600	mNm	Zieldrehmoment von Slave8
Slave 1 mode			Betriebsmodus des Slaves 1
Slave 2 mode			Betriebsmodus des Slaves 2
Slave 3 mode			Betriebsmodus des Slaves 3
Slave 4 mode			Betriebsmodus des Slaves 4
Slave 5 mode			Betriebsmodus des Slaves 5
Slave 6 mode			Betriebsmodus des Slaves 6
Slave 7 mode			Betriebsmodus des Slaves 7
Slave 8 mode			Betriebsmodus des Slaves 8
Slave 1 special function			Spezial Funktion des Slaves 1
Slave 2 special function			Spezial Funktion des Slaves 2
Slave 3 special function			Spezial Funktion des Slaves 3
Slave 4 special function			Spezial Funktion des Slaves 4
Slave 5 special function			Spezial Funktion des Slaves 5
Slave 6 special function			Spezial Funktion des Slaves 6
Slave 7 special function			Spezial Funktion des Slaves 7
Slave 8 special function			Spezial Funktion des Slaves 8

CAN Special functions:

XML Tag	Wertebereich	Einheit	Funktion	
Sf1-8	0 oder 5	keine	0 = Keine Funktion	
			5 = Reset last error	

Folgendes Beispiel setzt den Betriebsmodus des Masters und seinen 3 ersten Slaves auf 133 (Positionsregler ohne Bahnplaner). Zudem wird das maximale Drehmoment des Masters auf 200mNm und der slaves auf 100mNm gesetzt. Die «special functions» sind werden auf 0 gesetzt (keine Funktion):

```
<canConf m="200" mm="133"
sl1t="100" sl2t="100" sl3t="100" sl4t="0" sl5t="0" sl6t="0" sl7t="0" sl8t="0"
sl1m="133" sl2m="133" sl3m="133" sl4m="0" sl5m="0" sl6m="0" sl7m="0" sl8m="0"
sf1m="0" sf2m="0" sf3m="0" sf4m="0" sf5m="0" sf6m="0" sf7m="0" sf8m="0"
/>
```


4.1.5 ControlTicketCAN

Mit dem Control Ticket werden Zielpositionen für alle Motoren gesendet. Diese Zielpositionen werden dann je nach Betriebsmodus, welcher zuvor mit einem ConfigTicketCan generiert wurden angefahren.

XML Tag	Wertebereich	Einheit	Funktion
Pos	±2 ³¹	1/10 Grad	Definiert die Zielposition des Masters
Slave pos1	±2 ³¹	1/10 Grad	Zielposition von Slave1
Slave pos2	±2 ³¹	1/10 Grad	Zielposition von Slave2
Slave pos3	±2 ³¹	1/10 Grad	Zielposition von Slave3
Slave pos4	±2 ³¹	1/10 Grad	Zielposition von Slave4
Slave pos5	±2 ³¹	1/10 Grad	Zielposition von Slave5
Slave pos6	±2 ³¹	1/10 Grad	Zielposition von Slave6
Slave pos7	±2 ³¹	1/10 Grad	Zielposition von Slave7
Slave pos8	±2 ³¹	1/10 Grad	Zielposition von Slave8

<canPos pos="1000" sl1="200" sl2="20" sl3="500" sl4="1000" sl5="1000" sl6="1000" sl7="1000" sl8="1000" />

Als Beispiel könnte eine Start Sequenz wie folgt aussehen:

- 2. Pause 10s

4.1.6 AdvancedConfigCAN

Mit dem «advanced config CAN» Ticket werden Profil-Beschleunigungen und Geschwindigkeiten definiert. Diese Profieldaten werden im Modus 129 «Position Control» oder 130 «Speed Control» benötigt. Im Modus 130 «Position control NPP» haben die Profielkonfigurationen keine Wirkung.

XML Tag	Wertebereich	Einheit	Funktion
Master_speed	Uint16	RPM	Profil Geschwindigkeit für
			Mastermotor
Master_acc	Uint16	RPM/s^2	Profil Beschleunigung für
			Mastermotor
Master_decc	Uint16	RPM/s^2	Profil Verzögerung für Mastermotor

Slave1_speed	Uint16	RPM	Profil Geschwindigkeit für Slave 1
Slave1_acc	Uint16	RPM/s^2	Profil Beschleunigung für Slave 1
Slave1_decc	Uint16	RPM/s^2	Profil Verzögerung für Slave 1
Slave2_speed	Uint16	RPM	Profil Geschwindigkeit für Slave 2
Slave2_acc	Uint16	RPM/s^2	Profil Beschleunigung für Slave 2
Slave2_decc	Uint16	RPM/s^2	Profil Verzögerung für Slave 2
Slave3_speed	Uint16	RPM	Profil Geschwindigkeit für Slave 3
Slave3_acc	Uint16	RPM/s^2	Profil Beschleunigung für Slave 3
Slave3_decc	Uint16	RPM/s^2	Profil Verzögerung für Slave 3
Slave4_speed	Uint16	RPM	Profil Geschwindigkeit für Slave 4
Slave4_acc	Uint16	RPM/s^2	Profil Beschleunigung für Slave 4
Slave4_decc	Uint16	RPM/s^2	Profil Verzögerung für Slave 4
Slave5_speed	Uint16	RPM	Profil Geschwindigkeit für Slave 5
Slave5_acc	Uint16	RPM/s^2	Profil Beschleunigung für Slave 5
Slave5_decc	Uint16	RPM/s^2	Profil Verzögerung für Slave 5
Slave6_speed	Uint16	RPM	Profil Geschwindigkeit für Slave 6
Slave6_acc	Uint16	RPM/s^2	Profil Beschleunigung für Slave 6
Slave6_decc	Uint16	RPM/s^2	Profil Verzögerung für Slave 6
Slave7_speed	Uint16	RPM	Profil Geschwindigkeit für Slave 7
Slave7_acc	Uint16	RPM/s^2	Profil Beschleunigung für Slave 7
Slave7_decc	Uint16	RPM/s^2	Profil Verzögerung für Slave 7
Slave8_speed	Uint16	RPM	Profil Geschwindigkeit für Slave 8
Slave8_acc	Uint16	RPM/s^2	Profil Beschleunigung für Slave 8
Slave8 decc	Uint16	RPM/s^2	Profil Verzögerung für Slave 8

```
<canPos
ms="500" ma="200" md="2000"
s1s="500" s1a="1000" s1d="1000"
s2s="33" s2a="1000" s2d="1000"
s3s="0" s3a="0" s3d="0"
s4s="0" s4a="0" s4d="0"
s5s="0" s5a="0" s5d="0"
s6s="0" s6a="0" s6d="0"
s7s="0" s7a="0" s7d="0"
s8s="0" s8a="0" s8d="0"
/>
```


4.1.7 SystemTicket

XML Tag	Wertebereich	Einheit	Funktion
mode	0 - 11	keine	0 = Firmware Upgrade
			1 = Bootloader Upgrade
			2 = Position Reset (nicht permanent)
			3 = Factory Reset
			4 = Save data to EEPROM
			5 = Reset last error
			6 – 9 = Reserviert
			10 = Write Object
			11 = Read Object

Mit dem "System" Telegramm können verschiedene Systemzustände eingestellt werden.

Bei folgendem Beispiel, wird der Positionssensor des Antriebes in der aktuellen Lage auf 0 gesetzt:

<system mode="2" a="1" b="2" c="3" />

Nach einem Neustart des Motors entspricht die Laage des Rotors wieder der Absolut Position addiert mit dem Offset vom Web-GUI.

4.1.8 Zustandsobjekte lesen und schreiben

XML Tag	Wertebereich	Einheit	Funktion
m	0 - 8	keine	Master Index
S	0 – 70	keine	Slave Index
V	±2 ³¹	Keine	Wert beim schreiben eines Objektes

Lesen des Objektes 3.4 (letzter Error)

<objRead m="3" s="4" />

Schreiben des Objektes 3.4 (letzter Error)

<objWrite m="3" s="4" v="0" />

4.2 Meldungen vom Antrieb zum Hostrechner

Sobald eine TCP-Verbindung besteht, wird der Motor über den TCP seine Positionsdaten in Form eines XML formatierten Strings oder binär senden, je nach dem welcher Verbindungs- und Telegramm-Typ im Web GUI ausgewählt wurde.

Im UDP Betrieb können die transportierten Netzwerkdaten reduziert werden.

4.2.1 HDriveTicket

XML Tag	Wertebereich	Einheit	Bedeutung
Position	10 Stellen	Grad	Beinhaltet die aktuelle Position
			des Antriebes
Speed	8 Stellen	RPM	Zeigt die aktuelle
			Geschwindigkeit an
Torque	8 Stellen	mA	Der aktuelle Wirkstrom,
			welcher im direkten
			Zusammenhang mit dem
			Drehmoment steht
			(Drehmomentkonstante)
Time	10 Stellen	ms	Die Systemzeit in
			Millisekunden

<HDrive Position="300" Speed="0" Torque="0" Time="000216" />

Dieses Ticket hat immer eine Länge von 82 Byte.

4.2.2 BinaryTicketShort

Dieses Telegramm wird binär übermittelt. Dies hat viele Vorteile in Bezug auf die Rechenzeit, welche insbesondere beim Interpretieren des binären Tickets wesentlich geringer ist.

#	Beschreibung	Anzahl Bits
Word 0	Time	32 Bit
Word 1	Position	32 Bit
Word 2	Speed	32 Bit
Word 3	Torque	32 Bit

Die Ticketlänge beträgt 16 Byte.

Im binären Betrieb können die transportierten Netzwerkdaten als auch die Rechenleistung für die Interpretation der Daten reduziert werden.

4.2.3 BinaryTicket

#	Beschreibung	Anzahl Bits
Word 0	Time [us]	32 Bit
Word 1	Position	32 Bit
Word 2	Speed	32 Bit
Word 3	CurrentA [mA]	32 Bit
Word 4	CurrentB [mA]	32 Bit
Word 5	Calibration value	32 Bit
	[inc]	
Word 6	Fid [mA]	32 Bit
Word 7	Fiq [mA]	32 Bit
Word 8	0	32 Bit
Word 9	Temperatur [1/10°]	32 Bit
Word 10	Motor Modus	32 Bit
Word 11	Motor Spannung	32 Bit
	[mV]	
Word 12	Demanded Speed	32 Bit
Word 13	Demanded Position	32 Bit
Word 14	Demanded Torque	32 Bit
Word 15	Demanded	32 Bit
	Acceleration	
Word 16	Demanded	32 Bit
	Decceleration	
Word 17	GPIO	32 Bit
Word 18	Actual Motor State	32 Bit
Word 19	Software Version	32 Bit
Word 20	Current (RMS) in mA	32 Bit
Word 21	Temp	32 Bit
Word 22	Тетр	32 Bit
Word 23	Slave1 Position	32 Bit
Word 24	Slave 2 Position	32 Bit
Word 25	Slave 3 Position	32 Bit
Word 26	Slave 4 Position	32 Bit
Word 27	Slave 5 Position	32 Bit
Word 28	Slave 6 Position	32 Bit
Word 29	Slave 7 Position	32 Bit
Word 30	Slave 8 Position	32 Bit

Total 31 Byte.

BinaryCANTicket

Dieses Telegramm kann nur von einem CAN-Bus Master erzeugt werden und enthält alle Positionsdaten der am CAN-Bus angehängten «Slave» Motoren.

#	Beschreibung	Anzahl Bits
Word 0	Time	32 Bit
Word 1	Master Position	32 Bit
Word 2	Slave 1 Position	32 Bit
Word 3	Slave 2 Position	32 Bit
Word 4	Slave 3 Position	32 Bit
Word 5	Slave 4 Position	32 Bit
Word 6	Slave 5 Position	32 Bit
Word 7	Slave 6 Position	32 Bit
Word 8	Slave 7 Position	32 Bit
Word 9	Slave 8 Position	32 Bit
Word 10	Master Mode	32 Bit
Word 11	Slave 1 Mode	32 Bit
Word 12	Slave 2 Mode	32 Bit
Word 13	Slave 3 Mode	32 Bit
Word 14	Slave 4 Mode	32 Bit
Word 15	Slave 5 Mode	32 Bit
Word 16	Slave 6 Mode	32 Bit
Word 17	Slave 7 Mode	32 Bit
Word 18	Slave 8 Mode	32 Bit
Word 19	Master State	32 Bit
Word 20	Slave 1 State	32 Bit
Word 21	Slave 2 State	32 Bit
Word 22	Slave 3 State	32 Bit
Word 23	Slave 4 State	32 Bit
Word 24	Slave 5 State	32 Bit
Word 25	Slave 6 State	32 Bit
Word 26	Slave 7 State	32 Bit
Word 27	Slave 8 State	32 Bit

Die Ticketlänge beträgt 108 Byte.

5 Fehlerzustände

Die letzten Fehler werden im Motor direkt gespeichert und können über das Web GUI ausgelesen werden.

over temperatur	Schaltet den Motor aus, wenn die Platinen-Temperatur mehr
· · · · · · · · · · · · · · · · · · ·	als 85°C betragt.
under voltage	Schaltet den Motor aus und speichert alle Zustände, falls die
	Spannung unter 10V absinkt. Dies ist im normalen Betrieb
	kein Fehler, sondern die Standardprozedur, wenn der Motor
	ausgeschaltet wird.
over voltage	Schaltet den Motor aus, wenn die Betriebsspannung über
	30V ist. Insbesondere beim Bremsvorgang kann die Spannung
	durch den Generatorbetrieb stark ansteigen. Gegebenenfalls
	muss dem Motor einen zusätzlichen Kondensator oder ein
	Bremswiderstand hinzugefügt werden, sodass die
	überschüssige Leistung zwischengespeichert oder in Wärme
	umgewandelt werden kann.
over speed	Ist Motorgeschwindigkeit höher als 2000 RPM kann dies zu
	einer zu hohen induzierten Spannung führen. Der Motor wird
	automatisch gebremst.
PositiveSoftwarePositionLimit	Das positive Software position limit wurde erkannt und hat
	den motor gestoppt
NegativeSoftwarePositionLimit	Das negative Software position limit wurde erkannt und hat
5	den motor gestoppt
NagativeLimitSwitchTriggered	Der negative limit switch wurde bei der referenzierten Achse
5 55	ausgelöst. Digital I/O nicht als Referenzswitch konfigurieren.
	falls dieser Fehler nicht gewünscht ist.
PositiveLimitSwitchTriggered	Der positive Limit switch wurde bei der Referenzierten Achse
	ausgelöst. Digital I/O nicht als Referenzswitch konfigurieren,
	falls dieser Fehler nicht gewünscht ist.
LimitSwitchTimeout	Der Positive oder Negative Limit Switch wurde innert 300s
	nicht gefunden.
PosSensorError	Fehler in der Kalibrierung. Dies kann die folge eines
	mechanischen Defektes sein.
PowerStageError	Die Powerschaltung hat entweder eine Unterspannungs oder
	Übertemperatur Error. Die Unterspannung ist meist das
	Problem eines Fehlenden Kondensators in der nähe dieser
	Achse
WatchdogTimeout	Das Timeout welches jede Sekunde vom Motor
	dekrementiert wird. Ist die Funktion eingeschaltet und wird
	vom Host nicht zurückgesetzt, wird dieser sofort in den
	Retriehsmodus Ston geschaltet
	over temperaturunder voltageover voltageover voltageover speedPositiveSoftwarePositionLimitNegativeSoftwarePositionLimitNagativeLimitSwitchTriggeredPositiveSoftwarePositionLimitPositiveLimitSwitchTriggeredPositiveLimitSwitchTriggeredWatchdogTimeoutWatchdogTimeout

6 Firmware Upgrade

Die Firmware des HDrives kann aktualisiert werden. Dies kann über das Webinterface in Menu "Maintenance" gemacht werden. Danach kann die neue Firmware einfach auf den Motor geladen werden. Die Firmware-Dateien können unter <u>www.henschel-robotics.ch/hdrive/firmware</u> heruntergeladen werden.

6.1 Website Upgrade

Die Webseite welche das GUI beinhaltet kann separat aktualisiert werden. Dies geschiet ähnlich wie beim Firmwareupgrade über den Reiter «Maintenance». Ist kein GUI auf dem Motor vorhanden ershceint bei eingabe der IP-Adresse nur eine weisse Seite. Dann muss nach einschalten des Antriebs direkt mit einem Web-Browser auf die Addresse <u>http://192.168.1.102/fallback.html</u> gewechselt werden:

```
    CG
    Henschel-Robotics web access
    ×
    +

    ←
    →
    C
    ① Nicht sicher
    192.168.1.102/fallback.html
```

Fallback

This is a fallback page. This means that your HDrive seems not to have a valid web-GUI stored. Here you can upload a new firmware or a new web GUI into your HDrive.

Web-GUI update This loads a new web GUI into the HDrive memory Chose file Upload

Von hier kann wieder ein funktionierendes Web/GUI sowie auch eine neue Firmware hochgeladen werden.

6.2 Factory Reset

Ist die IP-Adresse unbekannt oder wurde der Motor versehentlich falsch programmiert können die Fabrikeinstellungen zurückgeladen werden. Dazu muss beim Einschalten des HDrives der Pin1 Anschluss drei Mal infolge, innert einer Sekunde, auf VCC gebracht werden. Dies kann mit ein wenig Übung von Hand gemacht werden. Bei erfolgreichem Reset blinkt die LED weiss/pink und wechselt in den Bootloader modus. Von dort kann eine Neue Fimrware auggespielt werden.

7 Technische Daten

7.1 Standartwerte der Kommunikation bei Auslieferung

IP Adresse:	192.168.1.102
Subnetz Maske	255.255.255.0
TCP-Port:	1000
UDP-Port:	1001

7.2 Elektrische Standardbetriebswerte

7.2.1 Versorgungsspannung

Name	Funktion	Einheit	Wert
VCC	Betriebsspannung	V	12-24
Spitzenstrom		A	3
Dauerstrom		A	2

Der HDrive besitzt einen integrierten Verpolungsschutz und übersteht eine Verpolung kurzzeitig ohne Schaden. Wird die Versorgungsspannung verkehrt angeschlossen zeigt der Antrieb keine Reaktion.

7.2.2 Elektrische absolute Maximalwerte

Name	Funktion	Einheit	Wert
VCC	Versorgungsspannung	V	28
Spitzenstrom	Versorgungsstrom	А	3
Digital In	Digitaler Eingang	V	0 – 24V (0-5V für alle HDrives vor 2018)

7.2.3 Motormerkmale

Name	Minimum	Typisch	Maximum	Einheit
Dimensionen		42 X 42 X 71.5		mm
(ohne Getriebe)				
Leerlauf Drehzahl	-1'000		1'000	U/min
Haltemoment	-0.5	-	0.5	Nm
single-turn absolut Encoder		14 Bit		
Absolut Genauigkeit kalibriert		+/- 0.2 (1 Sigma	a)	Grad
Drehmomentkonstante		200		mNm/A

7.2.4 Zeitliche Merkmale

Name	Minimum	Typisch	Maximum	Einheit
Stromreglerfrequenz		24		kHz
Positions/Geschwindigkeitsregler-		4		kHz
Frequenz				
Startzeit nach		2		S
Einschalten				
Positionssende	-	-	0.5	kHz
Frequenz Ethernet TCP				
Positionssende			2	kHz
Frequenz Ethernet UDP				

7.2.5 Umweltbedingungen

ART	FUNKTION
Umgebungstemperatur	–10 °C bis 40 °C, nicht kondensierend

7.2.6 Statusanzeige LED

LED	FUNKTION
Grün blinkend	Motor betriebsbereit
Grün dauernd	Endstufe eingeschaltet
Rot blinkend	Fehler
Rot und grün schnell blinkend	Firmware Reset
Gelb blinkend	Motor mit WebGUI verbunden
Blau dauernd	Motorendstufe eingeschaltet und WebGui verbunden

7.3 Digitale Ein- und Ausgänge

Die Ein- und Ausgänge am HDrive können dynamisch konfiguriert werden. Jeder GPIO kann als Ein- oder Ausgang definiert werden.

- Eingangsspannung 0...24 VDC (0-5V für HDrive Modelle vor 2018)
- Logik 0 < 2.0 V
- Logik 1 > 2.4 V

7.3.1 Eingangsbeschaltung:

Bild 11: Ein/Ausgangsbeschaltung

Alle Logikeingänge am Motor sind 24V kompatibel.

7.3.2 Drehmomentkurve, Gewicht und Abmessungen

Bild 12: Drehzahl / Drehmomentverlauf

7.3.3 Abmessungen HDrive17-ETH:

Gewicht, 480 Gramm.

7.3.4 Abmessungen HDrive17-ETH-i

Übertemperaturschutz

Test Bedingungen:

25.9°C Aussentemperatur; 24V; Drehmomentmodus Motor blockiert, Strom auf 0.8A geregelt.

Platinen Temperatur steigt nach 12 Minuten auf 75°C und stabilisiert sich dort. Test 3h bei 77°C Antrieb voll funktionsfähig.

8 Beispiele

Weitere Beispiele sind auf <u>www.henschel-robotics.ch</u> zu finden.